Federal Aviation Administration, DOT the rate of discharge, and the discharge distribution must be adequate to extinguish fires. It must be shown by either actual or simulated flights tests that under critical airflow conditions in flight the discharge of the extinguishing agent in each designated fire zone specified in paragraph (a) of this section will provide an agent concentration capable of extinguishing fires in that zone and of minimizing the probability of reignition. An individual "one-shot" system may be used for auxiliary power units, fuel burning heaters, and other combustion equipment. For each other designated fire zone, two discharges must be provided each of which produces adequate agent concentration. (c) The fire extinguishing system for a nacelle must be able to simultaneously protect each zone of the nacelle for which protection is provided. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–46, 43 FR 50598, Oct. 30, #### §25.1197 Fire extinguishing agents. - (a) Fire extinguishing agents must- - (1) Be capable of extinguishing flames emanating from any burning of fluids or other combustible materials in the area protected by the fire extinguishing system; and - (2) Have thermal stability over the temperature range likely to be experienced in the compartment in which they are stored. - (b) If any toxic extinguishing agent is used, provisions must be made to prevent harmful concentrations of fluid or fluid vapors (from leakage during normal operation of the airplane or as a result of discharging the fire extinguisher on the ground or in flight) from entering any personnel compartment, even though a defect may exist in the extinguishing system. This must be shown by test except for built-in carbon dioxide fuselage compartment fire extinguishing systems for which— - (1) Five pounds or less of carbon dioxide will be discharged, under established fire control procedures, into any fuselage compartment; or (2) There is protective breathing equipment for each flight crewmember on flight deck duty. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55467, Dec. 20, 1976; Amdt. 25–40, 42 FR 15044, Mar. 17, 1977] ## § 25.1199 Extinguishing agent con tainers. - (a) Each extinguishing agent container must have a pressure relief to prevent bursting of the container by excessive internal pressures. - (b) The discharge end of each discharge line from a pressure relief connection must be located so that discharge of the fire extinguishing agent would not damage the airplane. The line must also be located or protected to prevent clogging caused by ice or other foreign matter. - (c) There must be a means for each fire extinguishing agent container to indicate that the container has discharged or that the charging pressure is below the established minimum necessary for proper functioning. - (d) The temperature of each container must be maintained, under intended operating conditions, to prevent the pressure in the container from— - (1) Falling below that necessary to provide an adequate rate of discharge; - (2) Rising high enough to cause premature discharge. - (e) If a pyrotechnic capsule is used to discharge the extinguishing agent, each container must be installed so that temperature conditions will not cause hazardous deterioration of the pyrotechnic capsule. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–23, 35 FR 5678, Apr. 8, 1970; Amdt. 25–40, 42 FR 15044, Mar. 17, 1977] # § 25.1201 Fire extinguishing system materials. - (a) No material in any fire extinguishing system may react chemically with any extinguishing agent so as to create a hazard. - (b) Each system component in an engine compartment must be fireproof. ### §25.1203 Fire detector system. (a) There must be approved, quick acting fire or overheat detectors in each designated fire zone, and in the #### § 25.1207 combustion, turbine, and tailpipe sections of turbine engine installations, in numbers and locations ensuring prompt detection of fire in those zones. - (b) Each fire detector system must be constructed and installed so that— - (1) It will withstand the vibration, inertia, and other loads to which it may be subjected in operation; - (2) There is a means to warn the crew in the event that the sensor or associated wiring within a designated fire zone is severed at one point, unless the system continues to function as a satisfactory detection system after the severing; and - (3) There is a means to warn the crew in the event of a short circuit in the sensor or associated wiring within a designated fire zone, unless the system continues to function as a satisfactory detection system after the short circuit. - (c) No fire or overheat detector may be affected by any oil, water, other fluids or fumes that might be present. - (d) There must be means to allow the crew to check, in flight, the functioning of each fire or overheat detector electric circuit. - (e) Wiring and other components of each fire or overheat detector system in a fire zone must be at least fire-resistant. - (f) No fire or overheat detector system component for any fire zone may pass through another fire zone, unless— - (1) It is protected against the possibility of false warnings resulting from fires in zones through which it passes; - (2) Each zone involved is simultaneously protected by the same detector and extinguishing system. - (g) Each fire detector system must be constructed so that when it is in the configuration for installation it will not exceed the alarm activation time approved for the detectors using the response time criteria specified in the appropriate Technical Standard Order for the detector. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–23, 35 FR 5678, Apr. 8, 1970; Amdt. 25–26, 36 FR 5493, Mar. 24, 1971] #### §25.1207 Compliance. Unless otherwise specified, compliance with the requirements of §§ 25.1181 through 25.1203 must be shown by a full scale fire test or by one or more of the following methods: - (a) Tests of similar powerplant configurations; - (b) Tests of components; - (c) Service experience of aircraft with similar powerplant configurations; - (d) Analysis. [Amdt. 25-46, 43 FR 50598, Oct. 30, 1978] ## **Subpart F—Equipment** GENERAL #### §25.1301 Function and installation. Each item of installed equipment must— - (a) Be of a kind and design appropriate to its intended function; - (b) Be labeled as to its identification, function, or operating limitations, or any applicable combination of these factors: - (c) Be installed according to limitations specified for that equipment; and - (d) Function properly when installed. ## §25.1303 Flight and navigation instruments. - (a) The following flight and navigation instruments must be installed so that the instrument is visible from each pilot station: - (1) A free air temperature indicator or an air-temperature indicator which provides indications that are convertible to free-air temperature. - (2) A clock displaying hours, minutes, and seconds with a sweep-second pointer or digital presentation. - (3) A direction indicator (non-stabilized magnetic compass). - (b) The following flight and navigation instruments must be installed at each pilot station: - (1) An airspeed indicator. If airspeed limitations vary with altitude, the indicator must have a maximum allowable airspeed indicator showing the variation of V_{MO} with altitude. - (2) An altimeter (sensitive). - (3) A rate-of-climb indicator (vertical speed).